Interacting transcription factors from the three-amino acid loop extension superclass regulate tuber formation.

نویسندگان

  • Hao Chen
  • Faye M Rosin
  • Salomé Prat
  • David J Hannapel
چکیده

Using the yeast (Saccharomyces cerevisiae) two-hybrid system and a potato (Solanum tuberosum) KNOX protein, designated POTH1, as bait, we have identified seven distinct interacting proteins from a stolon library of potato. All seven cDNAs are members of the BEL1-like family of transcription factors. Among these proteins, there are at least four regions of high sequence conservation including the homeodomain, the proline-tyrosine-proline three-amino acid loop extension, the SKY box, and a 120-amino acid region upstream from the homeodomain. Through deletion analysis, we identified a protein-binding domain present in the carboxy end of the KNOX domain of POTH1. The protein-binding domain in the BEL1 protein is located in the amino-terminal one-half of the 120-residue conserved region of the BELs. RNA-blot analysis showed differential patterns of RNA accumulation for the BELs in various potato organs. The level of StBEL5 mRNA increased in response to a short-day photoperiod in both leaves and stolons. Similar to sense mutants of POTH1, transgenic lines that overexpressed StBEL5 exhibited enhanced tuber formation even under noninductive conditions. Unlike POTH1 sense lines, however, these BEL lines did not exhibit the extreme leaf and stem morphology characteristic of KNOX overexpressers and displayed a more rapid rate of growth than control plants. Both StBEL5 and POTH1 sense lines exhibited an increase in cytokinin levels in shoot tips. StBEL5 lines also exhibited a decrease in the levels of GA 20-oxidase1 mRNA in stolon tips from long-day plants. Our results demonstrate an interaction between KNOX and BEL1-like transcription factors of potato that may potentially regulate processes of development.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple Mobile mRNA Signals Regulate Tuber Development in Potato

Included among the many signals that traffic through the sieve element system are full-length mRNAs that function to respond to the environment and to regulate development. In potato, several mRNAs that encode transcription factors from the three-amino-loop-extension (TALE) superfamily move from leaves to roots and stolons via the phloem to control growth and signal the onset of tuber formation...

متن کامل

Phloem-mobile messenger RNAs and root development

Numerous signal molecules move through the phloem to regulate development, including proteins, secondary metabolites, small RNAs and full-length transcripts. Several full-length mRNAs have been identified that move long distances in a shootward or rootward direction through the plant vasculature to modulate both floral and vegetative processes of growth. Here we discuss two recently discovered ...

متن کامل

The Impact of the Long-Distance Transport of a BEL1-Like Messenger RNA on Development1[W][OA]

BEL1and KNOTTED1-type proteins are transcription factors from the three-amino-loop-extension superclass that interact in a tandem complex to regulate the expression of target genes. In potato (Solanum tuberosum), StBEL5 and its Knox protein partner regulate tuberization by targeting genes that control growth. RNAmovement assays demonstrated that StBEL5 transcripts move through the phloem to sto...

متن کامل

KNOXing on the BELL: TALE Homeobox Genes and Meristem Activity

All plant organs are derived from meristems. The shoot apical meristem (SAM) produces the aerial part of the plant. It has two main functions: the maintenance of a group of stem cells at the center of the meristem and the initiation of organs at its periphery. The organs are initiated in a regular spatial pattern, referred to as phyllotaxy, and are separated from the surrounding tissue by a bou...

متن کامل

Control of trichome formation in Arabidopsis by poplar single-repeat R3 MYB transcription factors

In Arabidopsis, trichome formation is regulated by the interplay of R3 MYBs and several others transcription factors including the WD40-repeat protein TRANSPARENT TESTA GLABRA1 (TTG1), the R2R3 MYB transcription factor GLABRA1 (GL1), the bHLH transcription factor GLABRA3 (GL3) or ENHANCER OF GLABRA3 (EGL3), and the homeodomain protein GLABRA2 (GL2). R3 MYBs including TRICHOMELESS1 (TCL1), TCL2,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant physiology

دوره 132 3  شماره 

صفحات  -

تاریخ انتشار 2003